

# PXIe-9852

2-CH 14-Bit 200 MS/s Digitizer

# **User's Manual**



 Manual Rev.:
 2.00

 Revision Date:
 Dec. 29, 2013

 Part No:
 50-17047-1000



# Advance Technologies; Automate the World.



# **Revision History**

| Revision | Release Date | Description of Change(s) |
|----------|--------------|--------------------------|
| 2.00     | 12/29/2013   | Initial Release          |

# Preface

#### Copyright 2014 ADLINK Technology, Inc.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

### Disclaimer

The information in this document is subject to change without prior notice in order to improve reliability, design, and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

### **Environmental Responsibility**

ADLINK is committed to fulfill its social responsibility to global environmental preservation through compliance with the European Union's Restriction of Hazardous Substances (RoHS) directive and Waste Electrical and Electronic Equipment (WEEE) directive. Environmental protection is a top priority for ADLINK. We have enforced measures to ensure that our products, manufacturing processes, components, and raw materials have as little impact on the environment as possible. When products are at their end of life, our customers are encouraged to dispose of them in accordance with the product disposal and/or recovery programs prescribed by their nation or company.

#### Conventions

Take note of the following conventions used throughout this manual to make sure that users perform certain tasks and instructions properly.





Additional information, aids, and tips that help users perform tasks.



Information to prevent *minor* physical injury, component damage, data loss, and/or program corruption when trying to complete a task.



Information to prevent *serious* physical injury, component damage, data loss, and/or program corruption when trying to complete a specific task.

# **Table of Contents**

| Pr | reface             | )     | I                                     | ii |
|----|--------------------|-------|---------------------------------------|----|
| Li | st of I            | Figu  | res v                                 | ii |
| Li | st of <sup>-</sup> | Tabl  | esi                                   | X  |
| 1  | Intro              | duc   | tion                                  | 1  |
|    | 1.1                | Fea   | tures                                 | 1  |
|    | 1.2                | Арр   | lications                             | 2  |
|    | 1.3                | Spe   | cifications                           | 2  |
|    | 1.3                | 3.1   | Analog Input                          | 2  |
|    | 1.3                | 3.2   | Timebase                              | 4  |
|    | 1.3                | 3.3   | Triggers                              | 5  |
|    | 1.3                | 3.4   | General Specifications                | 6  |
|    | 1.4                | Sof   | ware Support                          |    |
|    | 1.4                | 4.1   | SDK                                   | 7  |
|    | 1.4                | 4.2   | WD-DASK                               | 7  |
|    | 1.5                | Dev   | ice Layout and I/O Array              | 8  |
| 2  | Getti              | ing S | Started 1                             | 1  |
|    | 2.1                | Inst  | allation Environment1                 | 1  |
|    | 2.2                | Inst  | alling the Module 1                   | 2  |
| 3  | Oper               | ratio | ns 1                                  | 5  |
|    | 3.1                | Fun   | ctional Block Diagram1                | 5  |
|    | 3.2                | Ana   | log Input Channel 1                   | 5  |
|    | 3.2                | 2.1   | Analog Input Front-End Configuration1 | 5  |
|    | 3.2                | 2.2   | Input Range and Data Format1          | 6  |
|    | 3.2                | 2.3   | DMA Data Transfer1                    | 6  |
|    | 3.3                | Trig  | ger Source and Trigger Modes 1        | 8  |
|    | 3.3                | 3.1   | Software Trigger 1                    | 9  |



|                                  | 3.3.2 External Digital Trigger19 |        |                                     |    |  |
|----------------------------------|----------------------------------|--------|-------------------------------------|----|--|
|                                  | 3.3                              | 3.3    | PXI STAR Trigger                    | 19 |  |
|                                  | 3.3                              | 3.4    | PXIe_DSTARB Trigger                 | 20 |  |
|                                  | 3.3                              | 3.5    | PXI Trigger Bus                     | 20 |  |
|                                  | 3.3                              | 3.6    | Analog Trigger                      | 20 |  |
|                                  | 3.3                              | 3.7    | Trigger Export                      | 21 |  |
|                                  | 3.4                              | Trigge | er Modes                            | 21 |  |
|                                  | 3.4                              | 4.1    | Post Trigger Mode                   | 21 |  |
|                                  | 3.4                              | 4.2    | Delayed Trigger Mode                | 21 |  |
|                                  | 3.4                              | 4.3    | Pre-Trigger Mode                    | 22 |  |
|                                  | 3.4                              | 1.4    | Middle Trigger Mode                 | 23 |  |
|                                  | 3.4                              | 4.5    | Acquisition with Re-Triggering      | 23 |  |
|                                  | 3.4                              | 4.6    | Data Average Mode (Post-Trigger and |    |  |
|                                  |                                  |        | Delayed-Trigger only)               | 24 |  |
|                                  | 3.5                              | Timeb  | Dase                                | 25 |  |
|                                  | 3.5                              | 5.1    | Internal Reference Clock            | 25 |  |
|                                  | 3.5                              | 5.2    | External Reference Clock            | 25 |  |
|                                  | 3.5                              | 5.3    | External Sampling Clock             | 25 |  |
|                                  | 3.5                              | 5.4    | PXI_CLK10 Clock                     | 26 |  |
|                                  | 3.5                              | 5.5    | PXI_CLK100 Clock                    | 26 |  |
|                                  | 3.6                              | ADC 7  | Timing Control                      | 26 |  |
|                                  | 3.6                              | 5.1    | Timebase Architecture               | 26 |  |
|                                  | 3.6                              | 6.2    | Basic Acquisition Timing            | 26 |  |
|                                  | 3.7                              | Synch  | nronizing Multiple Modules          | 29 |  |
| Α                                | Арре                             | endix: | Calibration                         | 31 |  |
|                                  | A.1                              | Calibr | ation Constant                      | 31 |  |
|                                  | A.2                              | Auto-0 | Calibration                         | 31 |  |
| Important Safety Instructions 33 |                                  |        |                                     |    |  |
| Getting Service                  |                                  |        |                                     | 35 |  |

# **List of Figures**

| Figure 1-1:  | Analog Input Channel Bandwidth, ±0.2 Vpp                       | 3    |
|--------------|----------------------------------------------------------------|------|
| Figure 1-2:  | Analog Input Channel Bandwidth, ±2 Vpp                         | 4    |
| Figure 1-3:  | PXIe-9852 Schematic                                            | 8    |
| Figure 1-4:  | PXIe-9852 I/O Array                                            | 9    |
| Figure 3-1:  | Analog Input Architecture of the PXIe-9852                     | . 15 |
| Figure 3-2:  | Linked List of PCI Address DMA Descriptors                     | . 18 |
| Figure 3-3:  | Trigger Architecture of the PXIe-9852                          | . 18 |
| Figure 3-4:  | External Digital Trigger                                       | . 19 |
| Figure 3-5:  | Post-Trigger Acquisition                                       | . 21 |
| Figure 3-6:  | Delayed Trigger Mode Acquisition                               | . 22 |
| Figure 3-7:  | Pre-Trigger Mode Acquisition                                   | . 22 |
| Figure 3-8:  | Middle Trigger Mode Acquisition                                | . 23 |
| Figure 3-9:  | Re-Trigger Mode Acquisition                                    | . 24 |
| Figure 3-10: | PXIe-9852 Clock Architecture                                   | . 25 |
| Figure 3-11: | PXIe-9852 Timebase Architecture                                | . 26 |
| Figure 3-12: | Basic Digitizer Acquisition Timing                             | . 27 |
| Figure 3-13: | Varying Sampling Rates by Adjusting Scan Interval<br>Counter28 |      |



This page intentionally left blank.

# **List of Tables**

| Table | 1-1: | Timebase                           | 5  |
|-------|------|------------------------------------|----|
|       |      | Trigger Source & Mode              |    |
| Table | 1-3: | Digital Trigger Input              | 5  |
| Table | 1-4: | Digital Trigger Output             | 6  |
| Table | 1-5: | PXIe-9852 I/O Array Legend         | 10 |
| Table | 3-1: | Input Range and Data Format        | 16 |
| Table | 3-2: | Input Range FSR and –FSR Values    | 16 |
| Table | 3-3: | Input Range Midscale Values        | 16 |
| Table | 3-4: | Counter Parameters and Description | 29 |



This page intentionally left blank.

# 1 Introduction

The PXIe-9852 is a high-speed 2-CH 14-Bit 200 MS/s digitizer, specifically designed for applications such as LIDAR testing, optical fiber testing and radar signal acquisition. Analog input with 90 MHz bandwidth receives  $\pm 10V$  high speed signals with  $50\Omega$  impedance, and a simplified front-end design and highly stable onboard reference provide both highly accurate measurement results and high dynamic performance.

Ideal for environments requiring real-time acquisition and transfer of data, the PXIe-9852 is based on the PCI Express Gen 2 x4 bus as interface. When signals are converted from analog to digital, continual data transfer to host system memory is enabled by PCI Express high bandwidth capability.

The PXIe-9852 is auto-calibrated with an onboard reference circuit calibrating offset and acquiring analog input errors. Following auto-calibration, the calibration constant is stored in EEPROM, such that these values can be loaded and used as needed by the board. There is no requirement to calibrate the module manually.

### 1.1 Features

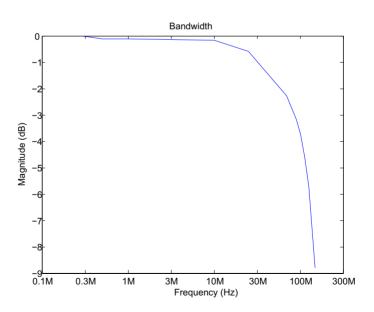
- ▶ PXI Express specification Rev. 1.0 compliant
- Up to 200 MS/s sampling rate
- 2 simultaneous analog inputs
- ► High resolution 14-Bit ADC
- ▶ Up to 90 MHz bandwidth for analog input
- ► One GB onboard storage memory
- Scatter-Gather DMA data transfer for high-speed data streaming
- Supports signal averaging
- ► Support for:
  - one external digital trigger input
  - > one digital trigger output to external instrument
  - one external clock input
  - > auto-calibration



## 1.2 Applications

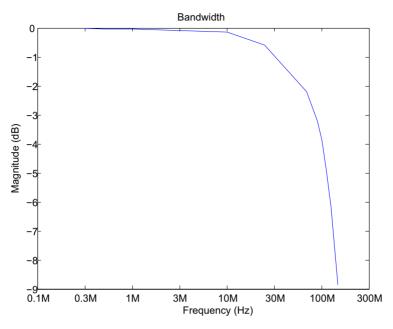
- Distributed Temperature Sensing (DTS)
- Video IC testing
- ▶ Physics laboratory and research environments
- Cable fault location and partial discharge monitoring for power applications

## 1.3 Specifications


#### 1.3.1 Analog Input

| Channel Characteristics Commer  |                                             |            |
|---------------------------------|---------------------------------------------|------------|
| Channels                        | 2 single-ended                              |            |
| Connector type                  | SMA                                         |            |
| Input coupling                  | AC or DC, software selectable               |            |
| AC coupling cutoff<br>frequency | 11 Hz                                       |            |
| ADC resolution                  | 14-Bit                                      |            |
| Input signal range              | ±0.2V, ±2V or ±10V                          |            |
| Bandwidth (-3dB)                | 90 MHz                                      |            |
|                                 | ±10V                                        | 1MΩ        |
| Overvoltage                     | ±10V sinewave / 7Vrms<br>with  Peaks  < 10V | 50Ω        |
| Input impedance                 | 50Ω or 1MΩ, software selectable             |            |
| Offset error                    | ±1 mV                                       |            |
| Gain error                      | ±0.65%                                      |            |
|                                 | 56dB                                        | 1MΩ, ±0.2V |
|                                 | 62dB                                        | 1MΩ, ±2V   |
| SNR                             | 62dB                                        | 1MΩ, ±10V  |
|                                 | 60dB                                        | 50Ω, ±0.2V |
|                                 | 62dB                                        | 50Ω, ±2V   |

| Channel Characteristics |       | Comment    |
|-------------------------|-------|------------|
|                         | -73dB | 1MΩ, ±0.2V |
|                         | -69dB | 1MΩ, ±2V   |
| THD                     | -65dB | 1MΩ, ±10V  |
|                         | -73dB | 50Ω, ±0.2V |
|                         | -69dB | 50Ω, ±2V   |
|                         | 72dB  | 1MΩ, ±0.2V |
|                         | 72dB  | 1MΩ, ±2V   |
| SFDR                    | 72dB  | 1MΩ, ±10V  |
|                         | 68dB  | 50Ω, ±0.2V |
|                         | 68dB  | 50Ω, ±2V   |
| CrossTalk               | -80dB | ±0.2V, ±2V |




While  $\pm 10V$ ,  $50\Omega$  acquisition is available, overvoltage protection only applies to 7Vrms. Any  $\pm 10V$  sine wave with an offset or DC voltage over  $\pm 7V$  input can cause damage.











### 1.3.2 Timebase

| Sample Clock                       | Comment                                                        |                      |
|------------------------------------|----------------------------------------------------------------|----------------------|
|                                    | Internal : on board synthesizer                                |                      |
| Timebase options                   | External : CLK IN (front panel),<br>PXI_CLK10, and PXIe_CLK100 |                      |
| Sampling clock                     | Internal : 200MHz                                              | 3.052kS/s to 200MS/s |
| frequency                          | External : 40MHz ~ 200MHz<br>(CLK IN)                          |                      |
| Timebase accuracy                  | < ± 25ppm                                                      |                      |
| External reference<br>clock source | Front panel, PXI_CLK10, and PXIe_CLK100                        |                      |

| Sample Clock                            | Comment        |                                                |
|-----------------------------------------|----------------|------------------------------------------------|
| External reference<br>clock             | 10MHz          |                                                |
| External reference<br>clock input range | 500mVpp ~ 5Vpp | AC / DC<br>compliant, 50Ω<br>load<br>impedance |
| External sampling clock input range     | 1Vpp ~ 5Vpp    | AC / DC<br>compliant, 50Ω<br>load<br>impedance |

#### Table 1-1: Timebase

### 1.3.3 Triggers

| Trigger Source & Mode                                                                                                      |                                                                                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| Trigger source         Software, external digital trigger, analog trigger, PXI_STAR, PXI_trigger bus [07], and PXIe_DSTARB |                                                                                                                  |  |
| Trigger mode                                                                                                               | Post trigger, delay trigger, pre-trigger, or middle trigger, re-trigger for post trigger and delay trigger modes |  |

#### Table 1-2: Trigger Source & Mode

| Digital Trigger Input             |                         |  |  |
|-----------------------------------|-------------------------|--|--|
| Sources Front panel SMA connector |                         |  |  |
| Compatibility                     | 3.3 V TTL, 5 V tolerant |  |  |
| Input high threshold              | 2.0 V                   |  |  |
| Input low threshold (VIL)         | 0.8 V                   |  |  |
| Maximum input overload            | -0.5 V ~ +5.5 V         |  |  |
| Trigger polarity                  | Rising or falling edge  |  |  |
| Pulse width                       | 20 ns minimum           |  |  |

#### Table 1-3: Digital Trigger Input



| Digital Trigger Output          |                                                                         |  |  |
|---------------------------------|-------------------------------------------------------------------------|--|--|
| Compatibility                   | 5 V TTL                                                                 |  |  |
| Output high threshold (VOH)     | 2.4 V                                                                   |  |  |
| Output low threshold (VOL)      | 0.2 V                                                                   |  |  |
| Trigger polarity                | Positive or negative                                                    |  |  |
| Pulse width                     | 50 ns, 100 ns, 150 ns, 200 ns, 500<br>ns, 1 μs, 2 μs, 7.5 μs, and 10 μs |  |  |
| Trigger output driving capacity | Capable of driving $50\Omega$ load                                      |  |  |

#### Table 1-4: Digital Trigger Output

## 1.3.4 General Specifications

| Specifications          |                                                                           |  |
|-------------------------|---------------------------------------------------------------------------|--|
| Physical dimensions     | 160 (W) x 100 (H) mm (6.24 x 3.9 in.)                                     |  |
| Bus                     |                                                                           |  |
| Bus interface           | PCI Express Gen 2 x 4                                                     |  |
| Environmental Tolerance |                                                                           |  |
| Operating               | Temperature: 0°C - 55°C<br>Relative humidity: 5% - 95%, non-condensing    |  |
| Storage                 | Temperature: -20°C - +80°C<br>Relative humidity: 5% - 95%, non-condensing |  |

| Calibration             |                 |
|-------------------------|-----------------|
| Onboard reference       | +5 V and +2.5 V |
| Temperature coefficient | 3.0 ppm/°C      |
| Warm-up time            | 15 minutes      |

| Power Consumption |                      |                |
|-------------------|----------------------|----------------|
| Power Rail        | Standby Current (mA) | Full Load (mA) |
| +3.3 V            | 766                  | 782            |
| 12 V              | 882                  | 970            |

# 1.4 Software Support

ADLINK provides versatile software drivers and packages to suit various user approaches to building a system. Aside from programming libraries, such as DLLs, for most Windows-based systems, ADLINK also provides drivers for other application environments such as LabVIEW<sup>®</sup>.

All software options are included in the ADLINK All-in-One CD. Commercial software drivers are protected with licensing codes. Without the code, you may install and run the demo version for trial/demonstration purposes for only up to two hours. Contact your ADLINK dealer to purchase the software license.

### 1.4.1 SDK

For customers who want to write their own programs, ADLINK provides the following software development kits.

- DAQPilot for Windows, compatible with various application environments, such as VB.NET, VC.NET, VB/VC++, BCB, and Delphi
- ▷ DAQPilot for LabVIEW
- ▷ Toolbox adapter for MATLAB

#### 1.4.2 WD-DASK

WD-DASK includes device drivers and DLL for Windows XP/7/8. DLL is binary compatible across Windows XP/7/8. This means all applications developed with WD-DASK are compatible with these Windows operating systems. The development environment may be VB, VB.NET, VC++, BCB, and Delphi, or any Windows programming language that allows calls to a DLL. The WD-DASK user and function reference manuals are on the ADLINK All-in-One CD.



# 1.5 Device Layout and I/O Array



All dimensions are in mm

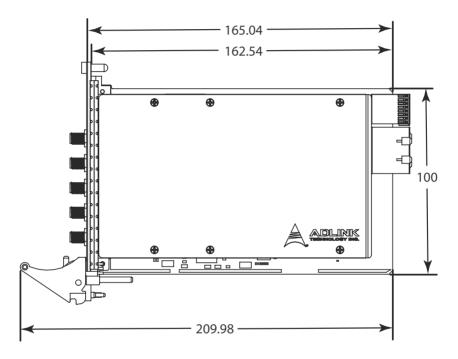



Figure 1-3: PXIe-9852 Schematic

The PXIe-9852 I/O array is labeled to indicate connectivity, as shown.

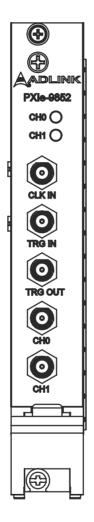



Figure 1-4: PXIe-9852 I/O Array



| Name                             | Faceplate<br>Legend | Туре         | Remark                                                                                                                                                                                                                      |
|----------------------------------|---------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СНО                              | N/A                 | Blue         | On indicates CH0 acquisition ongoing<br>Off indicates CH0 acquisition stopped                                                                                                                                               |
| CH1                              | N/A                 | Blue         | On indicates CH1 acquisition ongoing<br>Off indicates CH1 acquisition stopped                                                                                                                                               |
| Ext. Clock<br>Input              | CLK IN              |              | Input for external reference clock or sample clock to digitizer                                                                                                                                                             |
| Ext. Digital<br>Trigger<br>Input | TRG IN              |              | External digital trigger input, receiving trigger signal from external instrument and initiating acquisition                                                                                                                |
| Trigger<br>Output                | TRG OUT             | SMA<br>Screw | Trigger output, in which every time<br>acquisition begins, a pulse<br>synchronized with Timebase clock<br>asserts and is output through this<br>connector, at pulse width<br>programmable from 50ns to 10µs via<br>software |
| Analog<br>Input                  | CH0                 |              | Analog input channel                                                                                                                                                                                                        |
| Analog<br>Input                  | CH1                 |              | Analog input channel                                                                                                                                                                                                        |

#### Table 1-5: PXIe-9852 I/O Array Legend

# 2 Getting Started

This chapter describes proper installation environment, installation procedures, package contents and basic information users should be aware of regarding the PXIe-9852.



Diagrams and illustrated equipment are for reference only. Actual system configuration and specifications may vary.

# 2.1 Installation Environment

When unpacking and preparing to install, please refer to Important Safety Instructions.

Only install equipment in well-lit areas on flat, sturdy surfaces with access to basic tools such as flat- and cross-head screwdrivers, preferably with magnetic heads as screws and standoffs are small and easily misplaced.

**Recommended Installation Tools** 

- Phillips (cross-head) screwdriver
- Flat-head screwdriver
- Anti-static wrist strap
- Antistatic mat

ADLINK PXIe-9852 DAQ modules are electrostatically sensitive and can be easily damaged by static electricity. The module must be handled on a grounded anti-static mat. The operator must wear an anti-static wristband, grounded at the same point as the antistatic mat.



Inspect the carton and packaging for damage. Shipping and handling could cause damage to the equipment inside. Make sure that the equipment and its associated components have no damage before installation.



The equipment must be protected from static discharge and physical shock. Never remove any of the socketed parts except at a static-free workstation. Use the anti-static bag shipped with the product to handle the equipment and wear a grounded wrist strap when servicing.

## Package Contents

- ▶ PXIe-9852 high-speed digitizer
- ► ADLINK All-in-one compact disc
- ▶ PXIe-9852 Quick Start Guide

If any of these items are missing or damaged, contact the dealer



Do not install or apply power to equipment that is damaged or missing components. Retain the shipping carton and packing materials for inspection. Please contact your ADLINK dealer/ vendor immediately for assistance and obtain authorization before returning any product.

# 2.2 Installing the Module

1. Turn off the PXIe system/chassis and connect the power cable from the power source.

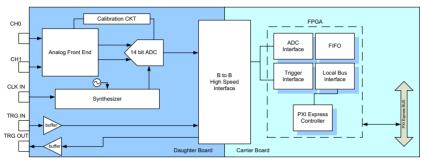


Connection of the power cable provides grounding to prevent hazardous ESD (electrostatic discharge).

- 2. Align the module's edge with the module guide in the PXIe chassis.
- 3. Slide the module into the chassis until resistance is felt from the PXIe connector.
- 4. Push the ejector latch upwards and fully insert the module into the chassis.

- 5. Once the module is fully seated, a "click" can be heard from the ejector latch.
- 6. Tighten the screw on the front panel.
- 7. Power up the PXIe system/chassis.

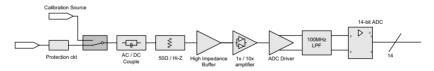



The red ejector latch lock must be depressed before the module can be uninstsalled.



This page intentionally left blank.

# 3 Operations


This chapter contains information regarding analog input, triggering and timing for the PXIe-9852.



# 3.1 Functional Block Diagram

# 3.2 Analog Input Channel

# 3.2.1 Analog Input Front-End Configuration





#### Input Configuration

The input channel terminates with equivalent  $50\Omega$  or 1 M $\Omega$  input impedance (selected by software). The 14-bit ADC provides not only accurate DC performance but also high signal-to-noise ratio, and high spurious-free dynamic range in AC performance. The ADC transfers data to system memory via the high speed PCI Express Gen2 X 4 interface.

For auto-calibration, internal calibration provides stable and accurate reference voltage to the AI.



#### 3.2.2 Input Range and Data Format

Data format of the PXIe-9852 is 2's complement. The ADC data of PXIe-9852 is on the 14 MSB of the 16-bit A/D data. The 2 LSB of the 16-bit A/D data should be truncated by software. A/D data structure is as follows.

| D15                                                        | D14      | D13      | D12 | <br>D3 | D2 | D1 | D0 |
|------------------------------------------------------------|----------|----------|-----|--------|----|----|----|
| D15 ~ D2 bits represent the data from ADC (2's complement) |          |          |     |        |    |    |    |
| D1, D0                                                     | bits are | always ( | ).  |        |    |    |    |

#### Table 3-1: Input Range and Data Format

| Description    | Full scale<br>range | Least<br>significant bit | FSR-1LSB  | -FSR     |
|----------------|---------------------|--------------------------|-----------|----------|
| Bipolar Analog | ±10V                | 1.22mV                   | 9.99878V  | -10.000V |
| Input          | ±2V                 | 0.244mV                  | 1.99976V  | -2V      |
|                | ±0.2V               | 24.4uV                   | 0.199976V | -0.2V    |
| Digital Code   | N/A                 | N/A                      | 7FFC      | 8000     |

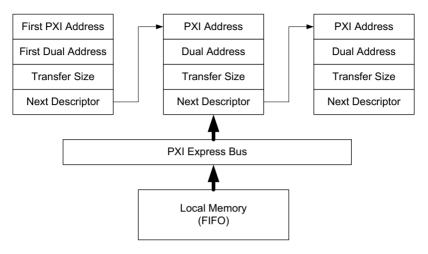
Table 3-2: Input Range FSR and –FSR Values

| Description    |       | Midscale +1LSB | Midscale | Midscale -1LSB |
|----------------|-------|----------------|----------|----------------|
| Bipolar Analog | ±10V  | 1.22mV         | 0V       | -1.22mV        |
| Input          | ±2V   | 0.244mV        | 0V       | -0.244mV       |
|                | ±0.2V | 24.4V          | 0V       | -24.4µV        |
| Digital Code   |       | 0004           | 0000     | FFFC           |

| Table | 3-3: Inpu | t Range | Midscale | Values |
|-------|-----------|---------|----------|--------|
|-------|-----------|---------|----------|--------|

#### 3.2.3 DMA Data Transfer

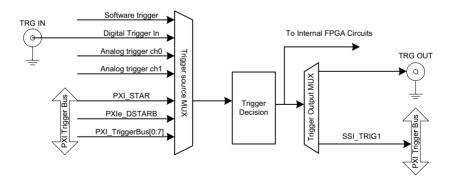
The PXIe-9852, a PCIe Gen 2 X 4 device, is equipped with a 200MS/s high sampling rate ADC, generating a 800 MByte/ second rate.


To provide efficient data transfer, a PCI bus-mastering DMA is essential for continuous data streaming, as it helps to achieve full potential PCI Express bus bandwidth. The bus-mastering controller releases the burden on the host CPU since data is directly transferred to the host memory without intervention. Once analog input operation begins, the DMA returns control of the program. During DMA transfer, the hardware temporarily stores acquired data in the onboard AD Data FIFO, and then transfers the data to a user-defined DMA buffer in the computer.

Using a high-level programming library for high speed DMA data acquisition, the sampling period and the number of conversions needs simply to be assigned into specified counters. After the AD trigger condition is met, the data will be transferred to the system memory by the bus-mastering DMA.

In a multi-user or multi-tasking OS, such as Microsoft Windows, Linux, or other, it is difficult to allocate a large continuous memory block. Therefore, the bus controller provides DMA transfer with scatter-gather function to link non-contiguous memory blocks into a linked list so users can transfer large amounts of data without being limited by memory limitations. In non-scatter-gather mode, the maximum DMA data transfer size is 2M double words (8 M bytes); in scatter-gather mode, there is no limitation on DMA data transfer size except the physical storage capacity of the system.

Users can also link descriptor nodes circularly to achieve a multibuffered DMA. Figure 3-2 illustrates a linked list comprising three DMA descriptors. Each descriptor contains a PCI address, PCI dual address, a transfer size, and the pointer to the next descriptor. PCI address and PCI dual address support 64-bit addresses which can be mapped into more than 4 GB of address space.





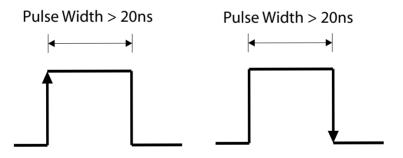



# 3.3 Trigger Source and Trigger Modes

This section details PXIe-9852 triggering operations.



#### Figure 3-3: Trigger Architecture of the PXIe-9852


The PXIe-9852 requires a trigger to implement acquisition of data. Configuration of triggers requires identification of trigger source. The PXIe-9852 supports internal software trigger, external digital trigger, and analog trigger.

#### 3.3.1 Software Trigger

The software trigger, generated by software command, is asserted immediately following execution of specified function calls to begin the operation.

### 3.3.2 External Digital Trigger

An external digital trigger is generated when a TTL rising edge or falling edge is detected at the SMA connector TRG IN on the front panel. As shown, trigger polarity can be selected by software. Note that the signal level of the external digital trigger signal should be TTL compatible, and the minimum pulse width 20 ns.



Rising Edge Trigger Event

Falling Edge Trigger Event



### 3.3.3 PXI STAR Trigger

When PXI STAR is selected as the trigger source, the PXIe-9852 accepts a TTL-compatible digital signal as a trigger signal.



Triggering occurs when a rising edge or falling edge is detected at PXI STAR, with trigger polarity configurable by software. The minimum pulse width requirement of this digital trigger signal is 20 ns.

### 3.3.4 PXIe\_DSTARB Trigger

The PXIe\_DSTARB signal, a differential signal transmitted via the PXI Express Chassis backplane, distributes high-speed, highquality trigger signals. When PXIe\_DSTARB is selected as the trigger source, the PXIe-9852 accepts a fast-switching LVDS digital signal as a trigger signal. Triggering occurs when a rising edge or falling edge is detected at PXIe\_DSTARB, with trigger polarity configurable by software, with minimum pulse width requirement of 20 ns.

### 3.3.5 PXI Trigger Bus

The PXIe-9852 utilizes PXI Trigger Bus Numbers 0 through 7 to act as a System Synchronization Interface (SSI). With the interconnected bus provided by PXI Trigger Bus, multiple modules are easily synched. When configured as input, the PXIe-9852 serves as a slave module and can accept trigger signals from one of buses 0 through 7. When configured as output, the PXIe-9852 serves as a master module and can output trigger signals to the PXI Trigger Bus Numbers 0 through 7.

### 3.3.6 Analog Trigger

An analog trigger is generated when AI input signal level is detected at the SMA connector CH0, CH1 (selected by software). The trigger level is also selected by software.

### 3.3.7 Trigger Export

When acquisition is initiated, a pulse synchronized with the Timebase clock asserts and is output through trigger output, at a pulse width programmable from 50ns to  $10\mu s$  via software.

## 3.4 Trigger Modes

Trigger modes applied to trigger sources initiate different data acquisition timings when a trigger event occurs. The following trigger mode descriptions are applied to analog input function.

## 3.4.1 Post Trigger Mode

Post-trigger acquisition is applicable when data is to be collected after the trigger event, as shown. When the operation starts, PXIe-9852 waits for a trigger event. Once the trigger signal is received, acquisition begins. Data is generated from ADC and transferred to system memory continuously. The acquisition stops once the total data amount reaches a predefined value.

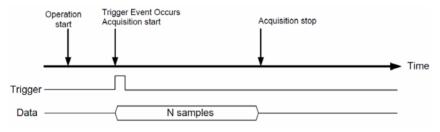



Figure 3-5: Post-Trigger Acquisition

## 3.4.2 Delayed Trigger Mode

Delayed-trigger acquisition is utilized to postpone data collection after the trigger event, as shown. When PXIe-9852 receives a trigger event, a time delay is implemented before commencing acquisition. The delay is specified by a 16-bit counter value such that a



maximum thereof is the period of TIMEBASE X ( $2^{16}$ ), and the minimum is the Timebase period.

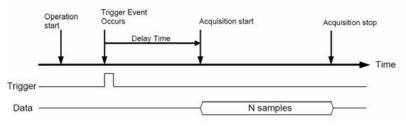



Figure 3-6: Delayed Trigger Mode Acquisition

#### 3.4.3 Pre-Trigger Mode

Collects data before the trigger event, starting once specified function calls are executed to begin the pre-trigger operation, and stopping when the trigger event occurs. If the trigger event occurs after the specified amount of data has been acquired, the system stores only data preceding the trigger event by a specified amount, as follows.

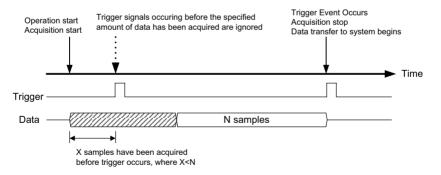



Figure 3-7: Pre-Trigger Mode Acquisition

### 3.4.4 Middle Trigger Mode

Collects data before and after the trigger event, with the amount to be collected set individually (M and N samples), as follows

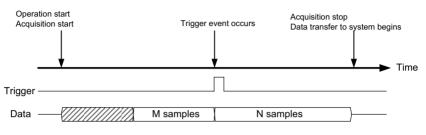



Figure 3-8: Middle Trigger Mode Acquisition

#### 3.4.5 Acquisition with Re-Triggering

A digitizer acquires a trace of N samples/channel for a single acquisition. Re-Trigger mode can also be set to automatically acquire R traces, containing N\*R samples/channel of data, without additional software intervention.

The Re-Trigger setting can be used for Post-Trigger and Delayed-Trigger modes, with different limitations on the spacing between trigger events in each mode. Trigger events arriving too close to the previous instance will be ignored by the digitizer.

- In Post-Trigger mode, the minimum spacing between trigger events is N+8
- In Delayed-Trigger mode, the minimum spacing between trigger events is (N+D)+8, where D is the number of the delayed setting



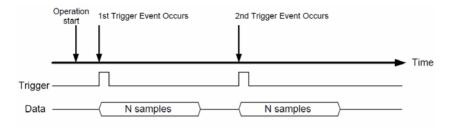



Figure 3-9: Re-Trigger Mode Acquisition

#### 3.4.6 Data Average Mode (Post-Trigger and Delayed-Trigger only)

In normal post-trigger mode acquisition, N samples/channel data are generated for a single trigger event. In Re-trigger mode (See "Acquisition with Re-Triggering" on page 23.), a total of N \* R samples/channel data is generated for R trigger events, that is, R traces (A trace contains N samples/channel). In Data Average Mode, only N samples/channel data are generated for R trigger events. The single trace data (N samples/channel) is the average of the R traces sample by sample.

The output data format is 16-bit or 32-bit signed integer, software selectable. When higher measurement accuracy is desired, data average mode with 32 bit data output can improve the resolution. According to oversampling practice, the retrigger times R required to get n bits of additional resolution is  $R = 4^n$ . Please note that in order for data average mode to work properly, components of signal of interest, such as period and magnitude, should be consistent during conversion.

# 3.5 Timebase

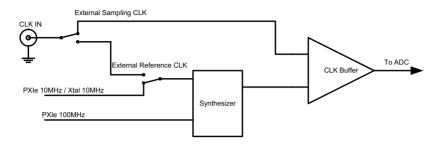



Figure 3-10: PXIe-9852 Clock Architecture

#### 3.5.1 Internal Reference Clock

The PXIe-9852 internal 10MHz Crystal oscillator acts as reference clock, generating, after synthesis, precisely 200MHz clock for ADC.

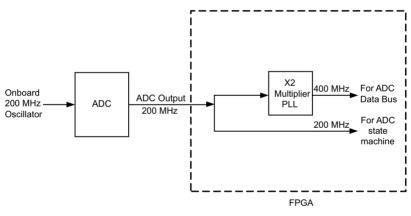
#### 3.5.2 External Reference Clock

The PXIe-9852 can choose an external clock source for use as a reference clock. When an external clock reference is selected, the synthesizer input will switch to the clock source at SMA connector CLK IN, and generate precisely 200MHz clock for ADC. The frequency of clock source is restricted to 10MHz.

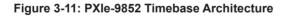
### 3.5.3 External Sampling Clock

The PXIe-9852 can further choose an external clock source as ADC sampling clock. When an external sampling clock is selected, the ADC sampling frequency switches to the clock source at SMA Connector CLK IN, and clock source frequency is available from 40MHz to 200MHz.




### 3.5.4 PXI\_CLK10 Clock

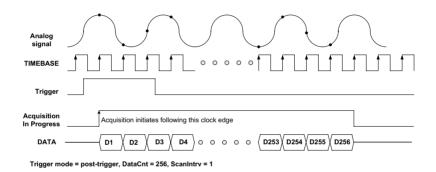
The PXIe-9852 can receive the timebase from the PXI\_CLK10 Clock, the signal of which originates at the PXI Express chassis backplane, matched in propagation delay within 1 ns.


### 3.5.5 PXI\_CLK100 Clock

The PXIe-9852 can receive the timebase from the PXI\_CLK100 Clock, the signal of which originates at the PXI Express chassis backplane, matched in propagation delay within 200 ps.

## 3.6 ADC Timing Control




#### 3.6.1 Timebase Architecture



#### 3.6.2 Basic Acquisition Timing

The PXIe-9852 commences acquisition upon receipt of a trigger event originating with software command, external digital trigger, or the PXIe Trigger Bus. The Timebase is a clock provided to the ADC and acquisition engine for essential timing. The Timebase is from an onboard synthesizer. To achieve different sampling rates, a scan interval counter is used.

Using the post-trigger mode as an example, as shown, when a trigger is accepted by the digitizer, the acquisition engine commences acquisition of data from ADC, and stores the sampled data to the onboard FIFO. When FIFO is not empty, data will be transferred to system memory immediately through the DMA engine. The sampled data is generated continuously at the rising edge of Timebase according to the scan interval counter setting. When sampled data reaches a specified value, in this example 256, acquisition ends.



#### Figure 3-12: Basic Digitizer Acquisition Timing

To achieve sampling rates other than 200MS/s, a number for scan interval counter needs only be specified. For example, if the scan interval counter is set as 2, the equivalent sampling rate is 200MS/ s / 2 = 100MS/s. If as 3, the equivalent sampling rate is 200MS/s / 3 = 66.66MS/s, and vice versa. The scan interval counter is 16 bits



in width, therefore the lowest sampling rate is 3.051KS/s (200MS/s  $^{\prime}$  65535).

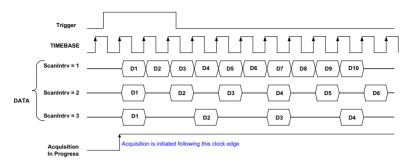



Figure 3-13: Varying Sampling Rates by Adjusting Scan Interval Counter

| Counter<br>Name | Length | Valid Value | Description                                                                                                                                                                                                                                          |
|-----------------|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ScanIntrv       | 16-bit | 1-65535     | Timebase divider to achieve<br>equivalent sampling rate of the<br>digitizer, where Sampling rate =<br>Timebase / ScanIntrv                                                                                                                           |
| DataCnt         | 28-bit | 1-268435452 | <ul> <li>Specifies the amount of data to be acquired:</li> <li>1 - 268435452 for pretrig or mid-trig mode operation</li> <li>1 - 268435452 for Data Average mode for 1 channel</li> <li>1 - 134217724 for Data Average mode for 2 channel</li> </ul> |
| trigDelayTicks  | 16-bit | 1 -65535    | Indicates time between a trigger<br>event and commencement of<br>acquisition. The unit of a delay<br>count is the period of the<br>Timebase.                                                                                                         |

| Counter<br>Name | Length | Valid Value  | Description                                                                                                                                                                                                                |
|-----------------|--------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ReTrgCnt        | 31-bit | 1-2147483647 | <ul> <li>Enables re-trigger to accept<br/>multiple triggers.</li> <li>▶ 1 - 2147483647 for<br/>normal operation</li> <li>▶ 1 - 65535 for Data<br/>Average mode</li> <li>See Acquisition with Re-<br/>Triggering</li> </ul> |

Table 3-4: Counter Parameters and Description

## 3.7 Synchronizing Multiple Modules

The SSI (System Synchronization Interface) of the PXIe-9852 is achieved by a trigger signal, pre\_data\_ready signal(s) and a reference clock, all transmitted through PXI\_BUS ports to enable multiple module synchronization. When synchronizing multiple devices, a PXIe-9852 can be configured as a master or a slave, wherein the system accommodates multiple slave devices but only a single master device. For better synchronization between multiple devices, all connected PXIe-9852s should refer to the same time base. The time base can be PXI\_CLK 10, PXIe\_CLK 100, or an external clock through the front panel.

When operating in post-trig or delay-trig mode, the only trigger signal transmitted through PXI BUS is SSI\_TRIG1, used to initiate acquisition of all devices. A master device should set one PXI\_BUS pin in output direction. The trigger signal will be sent out through this pin to other slave devices on PXI\_BUS. All slave devices should set the trigger signal from the corresponding PXI\_BUS pin so that all devices on PXI\_BUS are triggered simultaneously.

When any device on PXI\_BUS is required to operate in pre-trig or mid-trig mode, the master device must be set correspondingly. The trigger modes of other slave devices are not limited. A slave device in pre-trig/mid-trig mode transmits a pre\_data\_ready signal to inform the master device that it is ready to accept trigger signals (for more details of pre-trig and mid-trig status, please see "Pre-



Trigger Mode" on page 22. and "Middle Trigger Mode" on page 23.). This slave device should set one PXI\_BUS pin, not used to transmit and receive SSI\_TRIG1, to output to transmit its pre\_data\_ready signal to master device. If any other slave device is in pre-trig/mid-trig mode, it should set another PXI\_BUS pin to send its pre\_data\_ready signal. In this scenario, a single line on PXI\_BUS is used to transmit trigger signals from master to slave, while other specified lines are used to transmit pre\_data\_ready signals from slave devices in pre-trig/mid-trig mode to a master device. From the master device, one pin is assigned as output to transmit trigger signal. The trigger signal won't be sent out until all slaves' pre\_data\_ready is received by the master device.

# Appendix A Calibration

This chapter introduces the calibration process to minimize analog input measurement errors.

# A.1 Calibration Constant

The PXIe-9852 is factory calibrated before shipment, with associated calibration constants written to the onboard EEPROM. At system boot, the PXIe-9852 driver loads these calibration constants, such that analog input path errors are minimized. ADLINK provides a software API for calibrating the PXIe-9852.

The onboard EEPROM provides two banks for calibration constant storage. Bank 0, the default bank, records the factory calibrated constants, providing written protection preventing erroneous auto-calibration. Bank 1 is user-defined space, provided for storage of self-calibration constants. Upon execution of auto-calibration, the calibration constants are recorded to Bank 1.

When PXIe-9852 boots, the driver accesses the calibration constants and is automatically set to hardware. In the absence of user assignment, the driver loads constants stored in bank 0. If constants from Bank 1 are to be loaded, the preferred bank can be designated as boot bank by software. Following re-assignment of the bank, the driver will load the desired constants on system reboot. This setting is recorded to EEPROM and is retained until reconfiguration.

# A.2 Auto-Calibration

Because errors in measurement and outputs will vary with time and temperature, re-calibration is recommended when the module is installed. Auto-calibration can measure and minimize errors without external signal connections, reference voltages, or measurement devices.

The PXIe-9852 has an on-board calibration reference to ensure the accuracy of auto-calibration. The reference voltage is measured on the production line and recorded in the on-board EEPROM.



Before initializing auto-calibration, it is recommended to warm up the PXIe-9852 for at least 20 minutes and remove connected cables.



It is not necessary to manually factor delay into applications, as the PXIe-9852 driver automatically adds the compensation time.

# **Important Safety Instructions**

For user safety, please read and follow all **instructions**, **WARNINGS**, **CAUTIONS**, and **NOTES** marked in this manual and on the associated equipment before handling/operating the equipment.

- ▶ Read these safety instructions carefully.
- ► Keep this user's manual for future reference.
- Read the specifications section of this manual for detailed information on the operating environment of this equipment.
- When installing/mounting or uninstalling/removing equipment:
  - ▷ Turn off power and unplug any power cords/cables.
- ▶ To avoid electrical shock and/or damage to equipment:
  - ▷ Keep equipment away from water or liquid sources;
  - ▷ Keep equipment away from high heat or high humidity;
  - Keep equipment properly ventilated (do not block or cover ventilation openings);
  - Make sure to use recommended voltage and power source settings;
  - Always install and operate equipment near an easily accessible electrical socket-outlet;
  - Secure the power cord (do not place any object on/over the power cord);
  - Only install/attach and operate equipment on stable surfaces and/or recommended mountings; and,
  - If the equipment will not be used for long periods of time, turn off and unplug the equipment from its power source.



- Never attempt to fix the equipment. Equipment should only be serviced by qualified personnel.
- A Lithium-type battery may be provided for uninterrupted, backup or emergency power.



Risk of explosion if battery is replaced with an incorrect type; please dispose of used batteries appropriately.

- Equipment must be serviced by authorized technicians when:
  - ▷ The power cord or plug is damaged;
  - > Liquid has penetrated the equipment;
  - > It has been exposed to high humidity/moisture;
  - It is not functioning or does not function according to the user's manual;
  - ▷ It has been dropped and/or damaged; and/or,
  - ▷ It has an obvious sign of breakage.

# **Getting Service**

Contact us should you require any service or assistance.

#### ADLINK Technology, Inc.

Address: 9F, No.166 Jian Yi Road, Zhonghe District New Taipei City 235, Taiwan 新北市中和區建一路 166 號 9 樓 Tel: +886-2-8226-5877 Fax: +886-2-8226-5717 Email: service@adlinktech.com

#### Ampro ADLINK Technology, Inc.

 Address:
 5215 Hellyer Avenue, #110, San Jose, CA 95138, USA

 Tel:
 +1-408-360-0200

 Toll Free:
 +1800-966-5200 (USA only)

 Fax:
 +1-408-360-0222

 Email:
 info@adlinktech.com

#### ADLINK Technology (China) Co., Ltd.

| Address: | 上海市浦东新区张江高科技园区芳春路 300 号 (201203)            |
|----------|---------------------------------------------|
|          | 300 Fang Chun Rd., Zhangjiang Hi-Tech Park, |
|          | Pudong New Area, Shanghai, 201203 China     |
| Tel:     | +86-21-5132-8988                            |
| Fax:     | +86-21-5132-3588                            |
| Email:   | market@adlinktech.com                       |

#### **ADLINK Technology Beijing**

| Address: | 北京市海淀区上地东路 1 号盈创动力大厦 E 座 801 室(100085)   |
|----------|------------------------------------------|
|          | Rm. 801, Power Creative E, No. 1,        |
|          | Shang Di East Rd., Beijing, 100085 China |
| Tel:     | +86-10-5885-8666                         |
| Fax:     | +86-10-5885-8626                         |
| Email:   | market@adlinktech.com                    |

#### **ADLINK Technology Shenzhen**

 
 Address: 深圳市南山区科技园南区高新南七道 数字技术园 A1 栋 2 楼 C 区 (518057)

 2F, C Block, Bldg. A1, Cyber-Tech Zone, Gao Xin Ave. Sec. 7, High-Tech Industrial Park S., Shenzhen, 518054 China

 Tel:
 +86-755-2643-4858

 Fax:
 +86-755-2664-6353

 Email:
 market@adlinktech.com

#### LiPPERT ADLINK Technology GmbH

 Address:
 Hans-Thoma-Strasse 11, D-68163, Mannheim, Germany

 Tel:
 +49-621-43214-0

 Fax:
 +49-621 43214-30

 Email:
 emea@adlinktech.com



#### ADLINK Technology, Inc. (French Liaison Office)

 Address:
 15 rue Emile Baudot, 91300 Massy CEDEX, France

 Tel:
 +33 (0) 1 60 12 35 66

 Fax:
 +33 (0) 1 60 12 35 66

 Email:
 france@adlinktech.com

#### **ADLINK Technology Japan Corporation**

Address: 〒101-0045 東京都千代田区神田鍛冶町 3-7-4 神田 374 ビル 4F KANDA374 Bldg. 4F, 3-7-4 Kanda Kajicho, Chiyoda-ku, Tokyo 101-0045, Japan Tel: +81-3-4455-3722 Fax: +81-3-5209-6013 Email: japan@adlinktech.com

#### ADLINK Technology, Inc. (Korean Liaison Office)

Address: 서울시 전초구 서초동 1675-12 모인터빌딩 8 층 8F Mointer B/D,1675-12, Seocho-Dong, Seocho-Gu, Seoul 137-070, Korea Tel: +82-2-2057-0565 Fax: +82-2-2057-0563 Email: korea@adlinktech.com

#### ADLINK Technology Singapore Pte. Ltd.

Address: 84 Genting Lane #07-02A, Cityneon Design Centre, Singapore 349584

Tel: +65-6844-2261

Fax: +65-6844-2263

Email: singapore@adlinktech.com

#### ADLINK Technology Singapore Pte. Ltd. (Indian Liaison Office)

Address: 1st Floor, #50-56 (Between 16th/17th Cross) Margosa Plaza, Margosa Main Road, Malleswaram, Bangalore-560055, India

Tel: +91-80-65605817, +91-80-42246107

Fax: +91-80-23464606

Email: india@adlinktech.com

#### ADLINK Technology, Inc. (Israeli Liaison Office)

Address: 6 Hasadna St., Kfar Saba 44424, Israel

- Tel: +972-9-7446541
- Fax: +972-9-7446542
- Email: israel@adlinktech.com