

PCIe-7432

32CH Isolated DI/32CH Isolated DO PCIe Card

Manual Rev.:	2.00
Revision Date:	Jan. 29, 2016
Part No:	50-11259-1000

Advance Technologies; Automate the World.

Revision History

Revision	Release Date	Description of Change(s)
2.00	Jan.29, 2016	Initial release

Preface

Copyright ©2016 ADLINK Technology, Inc.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

Disclaimer

The information in this document is subject to change without prior notice in order to improve reliability, design, and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

Environmental Responsibility

ADLINK is committed to fulfill its social responsibility to global environmental preservation through compliance with the European Union's Restriction of Hazardous Substances (RoHS) directive and Waste Electrical and Electronic Equipment (WEEE) directive. Environmental protection is a top priority for ADLINK. We have enforced measures to ensure that our products, manufacturing processes, components, and raw materials have as little impact on the environment as possible. When products are at their end of life, our customers are encouraged to dispose of them in accordance with the product disposal and/or recovery programs prescribed by their nation or company.

Trademarks

Product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.

Conventions

Take note of the following conventions used throughout this manual to make sure that users perform certain tasks and instructions properly.

Additional information, aids, and tips that help users perform tasks.

Information to prevent *minor* physical injury, component damage, data loss, and/or program corruption when trying to complete a task.

Information to prevent *serious* physical injury, component damage, data loss, and/or program corruption when trying to complete a specific task.

Table of Contents

Re	evisio	on History ii
Pr	efac	e iii
Li	st of	Figures vii
Li	st of	Tables ix
1	Intro	oduction 1
	1.1	Features 1
	1.2	Applications 1
	1.3	Specifications 2
	1.4	Software Support 3
		PCIS-DASK3
	1.5	PCB Layout 3
	1.6	Connectors 4
	1.7	DI/O Channels 6
		Isolated Digital Input Channels
		Isolated Digital Output Channels7
2	Gett	ing Started 9
	2.1	Unpacking Checklist 9
	2.2	Installing the Card 9
3	Reg	ister Format 11
	3.1	I/O Address Map 11
	3.2	Digital Input Register 11
	3.3	Digital Output Register 12
A	open	dixA C/C++ DOS Function Library 13
	A.1	Data Types 13
	A.2	List of Functions 13

Initial		
Digita	I Input Relative Functions	
Digita	I Output Relative Functions	
Interro	upt Source Control	
Get Ir	nterrupt Status	
Interro	upt Enable	
Interro	upt Disable	
Important Safet	y Instructions	19
Getting Service		21

List of Figures

Figure 1-1:	PCIe-7432 Board Layout	3
Figure 1-2:	PCIe-7432 CN1 Connector	4
Figure 1-3:	Isolated Input Connection	7
Figure 1-4:	Common Ground Connection	8

This page intentionally left blank.

List of Tables

Table	1-1:	PCIe-7432 CN1 Pin Assignment	. 6
Table	3-1:	I/O Register Map	11
Table	3-2:	IDI_N: Isolated Digital Input CH N	11
Table	3-3:	IDI_N: Isolated Digital Input CH N	12

This page intentionally left blank.

1 Introduction

ADLINK'S PCIe-7432 for PCIe bus provides 32CH isolated DI and 32CH isolated DO and robust 2,500V isolation protection, suitable for most industrial applications.

All digital input channels are identical non-polar and opto-isolated. All channels are isolated and suitable for collecting digital inputs in noisy environments. Digital input channel 0 & 1 interrupt are supported.

Common input junction can be common ground or common power, depending on the environment, such that digital input can be either current source or current sink. When isolated digital output is ON, sink current is through transistors, and when OFF, none is.

The extra connection is utilized for the flywheel diode, forming a current-release closed loop, whereby transistors are protected from high reverse voltage generated by the inductance load when output is switched from ON to OFF.

1.1 Features

- ▶ PCI Express x1, Plug and Play
- ▶ 32CH isolated digital input & 32CH isolated digital output
- ► Isolation Voltage 2500V RMS
- Sink current up to 500mA@24V on single isolated output, 120mA@24V for all ON channels
- ► Isolated input voltage up to 24V
- ▶ Digital input channels 0 & 1 interrupt

1.2 Applications

- Laboratory and industrial automation
- Watchdog timer (WDT)
- Event counter
- Frequency counter and generator
- Low level pulse generator
- ► Time delay

1.3 Specifications

1.3.1 Digital Input

Input Channels	32	
Photocoupler	HCPL-814	
Input current	10 mA rated 20 mA max. for isolated input	
Input voltage Up to 24V DC or 24V AC Logic Low: 0 to 1.5V Logic High 5 to 24V		
Input impedance	2.4kΩ @ 0.5W	
Interrupt Sources	Digital input channels 0 and channel 1	
Isolated voltage	2,500V RMS channel-to-system	

1.3.2 Digital Output

Output Channels	32
Output Type	Darlington transistor with common ground
Output Voltage	5V DC min, 35V DC maximum
Throughput	10kHz (0.1 ms)
Isolated voltage	2,500V RMS channel-to-system

1.3.3 Isolated +5V Power Supply

Output Voltage	+5V
Output Current	200mA max. (@ 40°C)

1.3.4 Physical & Bus

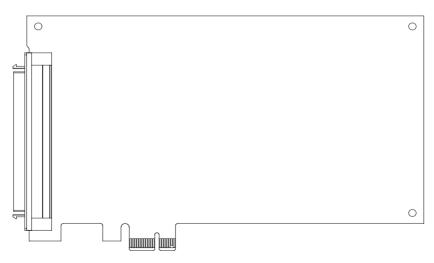
Dimensions	175 mm x 107 mm, standard PCIe half size	
Bus	1x PCI Express	
Operating temperature	0 to 60 °C	
Storage temperature	-20 °C to 80 °C	
Humidity	5 to 95% non-condensing	
Power consumption	+12V@180mA(typical) 500mA (Max.)	

1.4 Software Support

ADLINK provides comprehensive software solutions for all system building requirements. In addition to programming libraries such as DLLs for most Windows-based systems, ADLINK also provides drivers for other application environments such as Lab-VIEW®.

Be sure to install the driver & utility before using the PCIe-7432.

PCIS-DASK


PCIS-DASK consists of advanced 32/64-bit kernel drivers and SDK for customized DAQ application development, enabling detailed operations and superior performance and reliability from data acquisition systems.

PCIS-DASK kernel drivers now support Windows 7/8.1 OS.

1.5 PCB Layout

NOTE:

1.6 Connectors

The PCIe-7432 is equipped with a 100-pin SCSI connector (CN1).

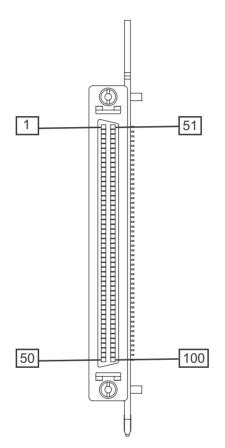


Figure 1-2: PCIe-7432 CN1 Connector

ID	Pin	Pin	ID
IDI_0	1	51	IDI_8
IDI_1	2	52	IDI_9
IDI_2	3	53	IDI_10
IDI_3	4	54	IDI_11

ID	Pin	Pin	ID
IDI 4	5	55	IDI 12
IDI_5	6	56	IDI_13
IDI_6	7	57	IDI_14
IDI_7	8	58	IDI_15
COM1	9	59	COM2
COM1	10	60	COM2
COM1	11	61	COM2
COM1	12	62	COM2
IDI_16	13	63	IDI_24
IDI_17	14	64	IDI_25
IDI_18	15	65	IDI_26
IDI_19	16	66	IDI_27
IDI_20	17	67	IDI_28
IDI_21	18	68	IDI_29
IDI_22	19	69	IDI_30
IDI_23	20	70	IDI_31
COM3	21	71	COM4
COM3	22	72	COM4
COM3	23	73	COM4
COM3	24	74	COM4
NC	25	75	NC
IDO_0	26	76	IDO_8
IDO_1	27	77	IDO_9
IDO_2	28	78	IDO_10
IDO_3	29	79	IDO_11
IDO_4	30	80	IDO_12
IDO_5	31	81	IDO_13
IDO_6	32	82	IDO_14
IDO_7	33	83	IDO_15
VDD1	34	84	VDD2
IGND	35	85	IGND
IGND	36	86	IGND
IGND	37	87	IGND

ID	Pin	Pin	ID
IDO_16	38	88	IDO_24
IDO_17	39	89	IDO_25
IDO_18	40	90	IDO_26
IDO_19	41	91	IDO_27
IDO_20	42	92	IDO_28
IDO_21	43	93	IDO_29
IDO_22	44	94	IDO_30
IDO_23	45	95	IDO_31
VDD3	46	96	VDD4
IGND	47	97	IGND
IGND	48	98	IGND
IGND	49	99	IGND
V5V	50	100	V5V

Table 1-1: PCIe-7432 CN1 Pin Assignment

1.7 DI/O Channels

Isolated Digital Input Channels

Isolated digital input has an open collector transistor structure with voltage range 0V to 24V and input resistance of 2.4k Ω . Connection between external signals and the PCIe-7432 is as shown in Fig A01. Since input common junction can be common ground in the environment, digital input can be either a current source or a current sink.

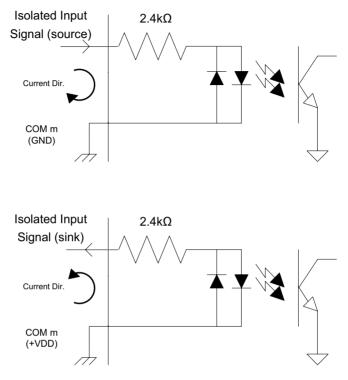


Figure 1-3: Isolated Input Connection

Isolated Digital Output Channels

Common ground connection of the isolated digital output is as shown. When isolated digital output is ON, sink current is through transistors, and when OFF, none is. When the load is of an inductance nature, such as a relay, coil or motor, the VDD pin must be connected to an external power source. The extra connection is utilized for the flywheel diode to form a current-release closed loop, whereby transistors are protected from any high reverse voltage generated by the inductance load when output is switched from ON to OFF.

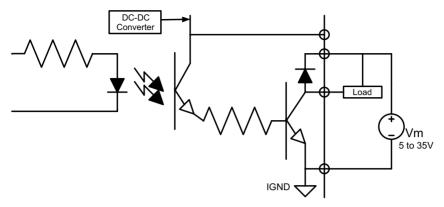


Figure 1-4: Common Ground Connection

2 Getting Started

2.1 Unpacking Checklist

Before unpacking, check the shipping carton for any damage. If the shipping carton and/or contents are damaged, inform your dealer immediately. Retain the shipping carton and packing materials for inspection. Obtain authorization from your dealer before returning any product to ADLINK. Ensure that the following items are included in the package.

- PCIe-7432 high-speed DI/O card
- ▶ Quick Start Guide

If any of the items is damaged or missing, contact your dealer immediately.

The card must be protected from static discharge and physical shock. Never remove any of the socketed parts except at a static-free workstation. Use the anti-static bag shipped with the product to handle the card. Wear a grounded wrist strap when servicing.

2.2 Installing the Card

Install the card driver before you install the card into your computer system. See "Software Support" on page 3. for driver support information.

To install the card:

- 1. Turn off the system/chassis and disconnect the power plug from the power source.
- 2. Remove the system/chassis cover.
- 3. Select the PCIE Express slot that you intend to use, then remove the bracket opposite the slot, if any.
- 4. Align the card connectors (golden fingers) with the slot, then press the card firmly until the card is completely seated on the slot.
- 5. Secure the card to the chassis with a screw.

- 6. Replace the system/chassis cover.
- 7. Connect the power plug to a power source, then turn on the system.

Configuration

All PCI/PCIE Express cards on your system are configured individually. Because configuration is controlled by the system and the software, no jumper setting is required for base address, DMA, and interrupt IRQ. Configuration is subject to change with every boot of the system as new PCI/PCIE Express[®] cards are added or removed.

Troubleshooting

If your system fails to boot or if you experience erratic operation with your PCI/PCIE Express card in place, an interrupt conflict may have been generated (such as when the BIOS Setup is incorrectly configured). Refer to the system's BIOS documentation for details.

3 Register Format

The following detailed register format descriptions are helpful for low-level programming, although it is recommended that users first fully understand the PCIe interface.

3.1 I/O Address Map

As PCIe-7432 registers are 32 bits long, they are accessible via 32-bit I/O instruction. The register address map, including descriptions and offset addresses relative to the base address, is as follows.

Address	Write	Read
Base + 0x00	Isolated DO	Isolated DI
Base + 0x40	Clear IRQ	

Table 3-1: I/O Register Map

- ► I/O port is 32 bits wide
- There is no 8-bit or 16-bit I/O access

3.2 Digital Input Register

Each bit of based address corresponds to a signal on one of the 32 digital input channels.

```
Address: BASE + 0 to BASE + 3 for 7432
```

Attribute: Read Only

Data format: 7432

	7	6	5	4	3	2	1	0
Base + 0	IDI_7	IDI_6	IDI_5	IDI_4	IDI_3	IDI_2	IDI_1	IDI_0
Base + 1	IDI_15	IDI_14	IDI_13	IDI_12	IDI_11	IDI_10	IDI_9	IDI_8
Base + 2	IDI_23	IDI_22	IDI_21	IDI_20	IDI_19	IDI_18	IDI_17	IDI_16
Base + 3	IDI_31	IDI_30	IDI_29	IDI_28	IDI_27	IDI_26	IDI_25	IDI_24

Table 3-2: IDI_N: Isolated Digital Input CH N

3.3 Digital Output Register

Each bit of based address corresponds to a signal on one of the 32 digital output channels.

Address: BASE + 0 to BASE + 3 for 7432

Attribute: Write Only

Data format: 7432

	7	6	5	4	3	2	1	0
Base + 0	IDO_7	IDO_6	IDO_5	IDO_4	IDO_3	IDO_2	IDO_1	IDO_0
Base + 1	IDO_15	IDO_14	IDO_13	IDO_12	IDO_11	IDO_10	IDO_9	IDO_8
Base + 2	IDO_23	IDO_22	IDO_21	IDO_20	IDO_19	IDO_18	IDO_17	IDO_16
Base + 3	IDO_31	IDO_30	IDO_29	IDO_28	IDO_27	IDO_26	IDO_25	IDO_24

Table 3-3: IDI_N: Isolated Digital Input CH N

Appendix A C/C++ DOS Function Library

A.1 Data Types

The following data types in the PCIe function library can be used in application programs.

Туре	Description	Range
U8	8-bit ASCII character	0 to 255
116	16-bit signed integer	-32768 to 32767
U16	16-bit unsigned integer	0 to 65535
132	32-bit signed integer	-2147483648 to 2147483647
U32	32-bit single-precision floating-point	0 to 4294967295
F32	32-bit single-precision floating-point	-3.402823E38 to 3.402823E38
F64	64-bit double-precision floating-point	797683134862315E308 to 1.797683134862315E309
Boolean	Boolean logic value	TRUE, FALSE

A.2 List of Functions

Function
Initial
Digital Input Relative Functions
Digital Output Relative Functions
Interrupt Source Control
Get Interrupt Status
Interrupt Enable
Interrupt Disable

Initial

Initializes all installed PCIe-7432 cards. Plug and play capability allows IRQ and I/O address to be assigned by the system BIOS directly.

Syntax

C/C++ (DOS)

```
U16 _7432_Initial (U16 *existCards, PCI_INFO
 *pciInfo)
```

C/C++ (Windows)

```
U16 W_7432_Initial (U16 *existCards, PCI_INFO
 *pciInfo)
```

Visual Basic (Windows)

```
W_7432_Initial (existCards As Integer, info As
PCI INFO) As Integer
```

Argument

existCards: The number of installed PCIe-7432 cards.

Pciinfo: Records PCIe bus plug and play initialization information as set by p&p BIOS. PCIe_INFO structure is defined in ACL_PCI.H, with base I/O address and interrupt channel number are stored in pciinfo for reference.

Return Code

```
ERR_NOError
ERR_PCIBiosNotExist
```

Digital Input Relative Functions

Read 32-bit digital input data from the digital input port (to obtain 32-bit data, call function **_7432_DI**).

Syntax

```
C/C++ (DOS)
```

U16 _7432_DI (U16 cardNo, U32 *di_data)

C/C++ (Windows)

U16 W_7432_DI (U16 cardNo, U32 *di_data)

Visual Basic (Windows)

W_7432_DI (ByVal cardNo As Integer, di_data As Long) As Integer

Argument

cardNo: Card number of selected board

di_data: Returns 32-bit value from digital port

Return Code

ERR_NoError ERR BoardNoInit

Digital Output Relative Functions

Write data to the digital output ports (to write 32-bit data, call function **_7432_DO**).

Syntax

C/C++ (DOS)

U16 _7432_DO (U16 cardNo, U32 do_data)

C/C++ (Windows)

U16 W_7432_DO (U16 cardNo, U32 do_data)

Visual Basic (Windows)

W_7432_DO (ByVal cardNo As Integer, ByVal do_data As Long) As Integer

Argument

cardNo: Card number of selected board

do_data: value is written to digital output port

Return Code

ERR_NoError ERR BoardNoInit

Interrupt Source Control

The dual interrupt system allows two interrupt sources to be generated and checked by the software, with the function enabling selection and control of the interrupt sources by writing data to the interrupt control register. The interrupt source can be set as Channel 0 (INT1) and/or Channel 1 (INT2) of the digital input channels.

Syntax

C/C++ (DOS)

C/C++ (Windows)

Visual Basic (Windows)

```
W_7432_Set_INT_Control (ByVal cardNo As Integer,
ByVal int1Flag As Integer, ByVal int2Flag As
Integer)
```

Argument

cardNo: Card number of selected board

int1Flag: INT1 setting; 0: disable, 1: enable

int2Flag: INT2 setting; 0: disable, 1: enable

Return Code

ERR_NoError ERR BoardNoInit

Get Interrupt Status

The dual interrupt system allows two interrupt sources to be generated and checked by the software, with the function identifying the inserted interrupt when both INT1 and INT2 are in use.

Syntax

C/C++ (DOS)

```
void _7432_Get_IRQ_Status (U16 cardNo, U16
 *int1Status, U16 *int2Status)
```

C/C++ (Windows)

```
void W_7432_Get_IRQ_Status (U16 cardNo, U16
    *int1Status, U16 *int2Status)
```

Visual Basic (Windows)

Argument

cardNo: Card number of selected board

int1Status: 0: interrupt not INT1, 1: interrupt is INT1

int2Status: 0: interrupt not INT2, 1: interrupt is INT2

Return Code

```
ERR_NoError
ERR BoardNoInit
```

Interrupt Enable

Activates the interrupt controller. After calling, software signals every interrupt request signal generated. Refer to sample program 7432int.c.

Syntax

C/C++ (Windows)

```
U16 W_7432_INT_Enable (U16 cardNo, HANDLE
 *hEvent)
```

Visual Basic (Windows)

Argument

cardNo: Card number of selected board

hEvent: address of array of two handles, with HEvent[0] and hEvent[1] events for interrupt signals INT1 and INT2 respectively.

Return Code

ERR_NoError ERR BoardNoInit

Interrupt Disable

Disables generation of interrupt signals. Only available for Windows 95 drivers.

Syntax

C/C++ (Windows)

U16 W 7432 INT Disable (U16 cardNo)

Visual Basic (Windows)

Argument

cardNo: Card number of selected board

Return Code

ERR_NoError ERR_BoardNoInit

Important Safety Instructions

For user safety, please read and follow all **instructions**, **WARNINGS**, **CAUTIONS**, and **NOTES** marked in this manual and on the associated equipment before handling/operating the equipment.

- ▶ Read these safety instructions carefully.
- ► Keep this user's manual for future reference.
- Read the specifications section of this manual for detailed information on the operating environment of this equipment.
- When installing/mounting or uninstalling/removing equipment:
 - > Turn off power and unplug any power cords/cables.
- ► To avoid electrical shock and/or damage to equipment:
 - ▷ Keep equipment away from water or liquid sources;
 - ▷ Keep equipment away from high heat or high humidity;
 - Keep equipment properly ventilated (do not block or cover ventilation openings);
 - Make sure to use recommended voltage and power source settings;
 - Always install and operate equipment near an easily accessible electrical socket-outlet;
 - Secure the power cord (do not place any object on/over the power cord);
 - Only install/attach and operate equipment on stable surfaces and/or recommended mountings; and,
 - If the equipment will not be used for long periods of time, turn off and unplug the equipment from its power source.

 Never attempt to fix the equipment. Equipment should only be serviced by qualified personnel.

A Lithium-type battery may be provided for uninterrupted, backup or emergency power.

Risk of explosion if battery is replaced with one of an incorrect type. Dispose of used batteries appropriately.

- Equipment must be serviced by authorized technicians when:
 - ▷ The power cord or plug is damaged;
 - ▷ Liquid has penetrated the equipment;
 - > It has been exposed to high humidity/moisture;
 - It is not functioning or does not function according to the user's manual;
 - > It has been dropped and/or damaged; and/or,
 - \triangleright It has an obvious sign of breakage.

Getting Service

Ask an Expert: http://askanexpert.adlinktech.com

ADLINK Technology, Inc.

Address:	9F, No.166 Jian Yi Road, Zhonghe District
	New Taipei City 235, Taiwan
	新北市中和區建一路 166 號 9 樓
Tel:	+886-2-8226-5877
Fax:	+886-2-8226-5717
Email:	service@adlinktech.com

Ampro ADLINK Technology, Inc.

Address:	5215 Hellyer Avenue, #110
	San Jose, CA 95138, USA
Tel:	+1-408-360-0200
Toll Free:	+1-800-966-5200 (USA only)
Fax:	+1-408-360-0222
Email:	info@adlinktech.com

ADLINK Technology (China) Co., Ltd.

Address:	上海市浦东新区张江高科技园区芳春路 300 号 (201203)
	300 Fang Chun Rd., Zhangjiang Hi-Tech Park
	Pudong New Area, Shanghai, 201203 China
Tel:	+86-21-5132-8988
Fax:	+86-21-5132-3588
Email:	market@adlinktech.com

ADLINK Technology Beijing

Address:	北京市海淀区上地东路 1 号盈创动力大厦 E 座 801 室(100085)
	Rm. 801, Power Creative E, No. 1 Shang Di East Rd.
	Beijing, 100085 China
Tel:	+86-10-5885-8666
Fax:	+86-10-5885-8626
Email:	market@adlinktech.com

ADLINK Technology Shenzhen

Address:	深圳市南山区科技园南区高新南七道 数字技术园
	A1栋2楼C区 (518057)
	2F, C Block, Bldg. A1, Cyber-Tech Zone, Gao Xin Ave. Sec. 7
	High-Tech Industrial Park S., Shenzhen, 518054 China
Tel:	+86-755-2643-4858
Fax:	+86-755-2664-6353
Email:	market@adlinktech.com

LiPPERT ADLINK Technology GmbH

Address:	Hans-Thoma-Strasse 11
	D-68163 Mannheim, Germany
Tel:	+49-621-43214-0
Fax:	+49-621 43214-30
Email:	emea@adlinktech.com

PENTA ADLINK Technology GmbH

	Ulrichsbergerstrasse 17
	94469 Deggendorf, Germany
Tel:	+49 (0) 991 290 94 – 10
Fax:	+49 (0) 991 290 94 - 29
Email:	emea@adlinktech.com

ADLINK Technology, Inc. (French Liaison Office)

Address: 6 allée de Londres, Immeuble Ceylan

	91940 Les Ulis, France
Tel:	+33 (0) 1 60 12 35 66
Fax:	+33 (0) 1 60 12 35 66
Email:	france@adlinktech.com

ADLINK Technology Japan Corporation

Address:	〒101-0045 東京都千代田区神田鍛冶町 3-7-4
	神田 374 ビル 4F
	KANDA374 Bldg. 4F, 3-7-4 Kanda Kajicho,
	Chiyoda-ku, Tokyo 101-0045, Japan
Tel:	+81-3-4455-3722
Fax:	+81-3-5209-6013
Email:	japan@adlinktech.com

ADLINK Technology, Inc. (Korean Liaison Office)

Address:	경기도 성남시 분당구 수내로 46 번길 4 경동빌딩 2 층
	(수내동 4-4 번지) (우) 463-825
	2F, Kyungdong B/D, 4 Sunae-ro 46 beon-gil
	Bundang-gu, Seongnam-si, Gyeonggi-do, Korea, 463-825
Toll Free	+82-80-800-0585
Tel	+82-31-786-0585
Fax	+82-31-786-0583
Email:	korea@adlinktech.com
	5

ADLINK Technology Singapore Pte. Ltd.

Address:	84 Genting Lane #07-02A, Cityneon Design Centre
	Singapore 349584
Tel:	+65-6844-2261
Fax:	+65-6844-2263
Email:	singapore@adlinktech.com

ADLINK Technology Singapore Pte. Ltd. (Indian Liaison Office)

Address:	#50-56, First Floor, Spearhead Towers
	Margosa Main Road (between 16th/17th Cross)
	Malleswaram, Bangalore - 560 055, India
Tel:	+91-80-65605817, +91-80-42246107
Fax:	+91-80-23464606
Email:	india@adlinktech.com

ADLINK Technology, Inc. (Israeli Liaison Office)

Address:	27 Maskit St., Corex Building
	PO Box 12777
	Herzliya 4673300, Israel
Tel:	+972-54-632-5251
Fax:	+972-77-208-0230
Email:	israel@adlinktech.com

ADLINK Technology, Inc. (UK Liaison Office)

 Tel:
 +44 774 010 59 65

 Email:
 UK@adlinktech.com